
UDC 531.36 

ON THE THEORY OF STABILITY ON A GIVSl TIME INTERVAL 

PMM vol. 41, N:5, 1977, pp. 844-849 

K. A. ABGARIAN and V. T. AVANIAN 
(Ecevan) 

(Received February 15, 1977) 

A problem of stability on an infinite time interval is considered using the 
formulation of [l] which can also be used on a finite time interval. Cer- 
tain comparisons with the formulation due to Liapunov are made. A suffi- 
cient condition for the asymptotic stability as well as the necessary and 

sufficient condition of stability for a linear homogeneous autonomous sys- 
tem, and sufficient conditions of asymptotic stability and instability for a 

nonlinear autonomous system are obtained. 

1. We consider a problem of stability using the following formulation [l] : 

De f in i t i on 1. 1. An unperturbed process is called stable if a matrixG (t)exists 
in a given classK~~such that for a sufficiently small p > 0 any perturbation of z (t) 
of the process, the initial value z (to) = z,, of which satisfies the condition 

(G-’ (to) 50, G-' (to) x0) < p? 

and for all t > to satisfies the condition 

(1.1) 

(G-l (t) x (t), G-’ (t) x (t)) < pa (1.2) 

Under the class KA” we understand the collection of n X n matrices G (t) = 

(GI (t), . . ., G, (t)) over the field of complex numbers satisfying, on [to, 00) the con- 
ditions that 1 det G (t) 1 # 0 and, that the Hermitian norm of the columns G, (t), . . ., 

6 (0 coincides with a given positive function o (t), i. e. that 11 Gj (t) 11 = 
0 (t) (i = 1, 2, . . . , n). 

Definition 1. 2. An unperturbed process is called asymptotically stable on 

[a, m), if it is stable on [u, oo) and for any to E [a, m) a value p = p (to) > 0 
exists such that all perturbatibns 2 (t) of the process satisfying the condition (1.1) have 
the property stating that Jim 11 2 (t) 11 = 0 as t -+ 00. 

Using this formulation we give certain conditions of stability on an unlimited inter- 
val and of asymptotic stability of motion. 

2. Let us consider the equation 

ax / dt = x (t, x) (2.1) 

x (t, z) E ci”;f-’ (Z), 2 = I x D, I = {a < t < co} 

Here II denotes an open region belonging, in general, to the n-dimensional corn- 
plex vector space Rn,while X and x are column matrices of the type n X l,with 

x (t, 0) EE 0. 
We note that for a bounded function o (t): a) the system is unstable under the 
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given formulation if at least one solution unbounded on I exists originating in a suffi- 
ciently small neighbourhood of the coordinate origin and, b) if the system is stable, then 
every solution of this system originating in a sufficiently small neighbourhood of the co- 

ordinate origin is bounded on I. 
The example which follows illustrates the fact that the boundedness of the solutions 

of the system does not represent a sufficient criterion for its stability. 

Consider the equation 

dX t--b -=_-----_ 
dt 62 ’ 

G =const>O 

the trivial solution (5 z 0) of which is Liapunov stable. The nontrivial solution has the 
form 

z(t) = + E (Q, E (t) = exp 
(t-b)” 

-23”. ; 1 x Go) = + E Go) @o < 3 

In the case of a scalar differential equation, the PO tubes have the form 

v (t, 5) E o-2 (t) I x I2 < P2 

When i c i < WE-~ {to) and o (to) = 2 we obtain v (to, zz (to)) = I I (to) Ia 6 Pzt and 

e. g. 

V (b, x @)I = & p2 exp hgY_ 

This shows that depending on o2 (b) the quantity I’ (t, 5 (t))can be greater than p2 near 
the point t = b, although x (t) is bounded in the interval Ito, 00). 

This example shows that a Liapunov-sable system may lack the stability as defi- 
ned by Definition 1.1. 

We shall show that the stability under the given formulation always implies the Lia- 
punov stability, Let o (t) -< o,, and the system (2.1) be stable in the sense of Defini- 
tion 1.1. Then every solution of this system satisfying the condition (1.1) will also sa- 
tisfy the condition (1.2). From (1.2) by virtue of inequality hi (H tt)) -2 

(i,Z@J-i (to < t < ‘=) ( see [Z]) where H (t) = G-i* (t) G-r (t) for all t > t,, 
we have 11 x (t) jl < (1/ 2Q”zp. Let a be an arbitrarily small positive number. When 

p < E (1/ %I,,)-~/~ we have 11 z (t) )I < 8 f or all solutions the initial values of which 

satisfy the condition [I cz (to) I} < 6; = 6, Th is implies that the system is Liapunov- 

stable. 
In what follows, the given positive function o (t) will be treated as a constant. 

3. Let us consider the system 

dx / dt = Ax (3.1) 

where A is a constant n X n matrix. 
Theorem 3.1. The system (3.1) is asymptotically stable if all characteristic 

roots?kj(j = 1, _ . , , n) of the matrix A have negative real parts. 

Proof. Let Re hj < 0 (i = 1, . . . , n). Then for any positive definite Her- 
mitian matrix W = const a positive definite Hermitian matrix H = conat exists 
such that 
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d*H + HA = -2W 
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(3.2) 

A solution of (3.2) for H has the form 

f&2\’ e*+WeAr dz 
;I 

for any W (see e. g. [3] ). Let us choose W such that the following relation holds for H: 

where pi (i = 1, . . . , n) are the eigenvalues of the Hermitian matrix f-I,Conse- 
quently, using a lemma given in [4]* we can write the matrix W in the form H = 
K-l*K-1 where the relation 11 Kj I[ = 0 (j = 1, . . . , n) holds for the columns 

ofthematrixK=(K,, . . . . K,). 
The function v (2) = (Hx, x) defines the p. - tube 

V (x) G (K-Q, K-b) = ps 

since K E Kb O. Its derivative with respect to t can be written, by virtue of the sys- 

tem (3. l), in the form V’ (x) = -2 (Wx, z). When x (1) + 0 we have Tr’ (X (t)) 
< 0 on la, m) and this implies that Y (X (9) < V (x (a)) for all t > a . 

From the last inequality follows the stability of (3.1). 
On the other hand, since every solution of (3.1) has the form 

x(t) = fg eh+Pi(t) (nt< n) 
i=l 

where Pj (t) (f = 1, . . *, m) are polynomial matrices, we have 

lim f-%Q II 2 ft) If = 0 

which completes the proof. The converse of the theorem is also true, 

Theorem 3. 2. The system (3.1) is stable if and only if all characteristic roots 
hj (j=1, *.., n) of the matrix A have nonpositive real parts, i. e. Re hj < 
O(j=& .*., n)where the equals sign occurs only if the corresponding elementary 

divisors are simple. 

Proof. We assume that Ai, . . . , hp are the eigenvalues of the matrixd corres- 

ponding to various Jordan cells and, that the transformation 2 = Kg reduces (3.1) to 

the form 

dy I dt = I (A) y, I (h) = diag {I, (Al), . . . , 1, (Q) (3.3) 

Necessity. Let the system (3.1) be stable. From the existence of an eigenvalue 

a, of the matrix A such that Re h, > 0 or H e h, = 0 and the corresponding elemen- 
tary divisor is of order K, ,a ’ 1, it follows that the system (3.1) has an unbounded so- 

lution. Since this contradicts the condition of stability of the system (3. l), the necessi- 
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ty is proved. 

Sufficiency. Let hj (1 r= 1, . . . , q; Q --( p) denote all characteristic roots 
of the matrix ~1 which have the corresponding different Jordan cells and He ~j < 0, 
and let h, (s =: v. -1. 1, . . . . /J) denote all characteristic roots of A where He lb, 
0 and all h,*admit only the simple, elementary divisors. Then we can partition the col- 

umn matrix $/ (1) in (3.3) into two blocks in such a manner, that the number in the first 
block is equal to r = k, + k, + ,,. + k, ( kj denotes the order of the cell Ii (A,)). 
After this the system (3.3) can be separated into two independent subsystems 

&JO’/& Ls My(‘), dy(V& = ‘Q/C’) (3.4) 

M = diag {II (A,), . . e. , I, (ha)}, :I = diag {I& (h,+l), . . ., 1, (Q} 

All conditions of the theorem 3.1. hold for the first system of (3.4), therefore the 
system is stable i. e. a matrix G, (t) E Ka@ exists such that along the solution $‘I (9 

the inequality 

v, (y”’ (to)) G Pla (3.5) 

for all t > to implies that 

pi-’ (H,) = co2 , 11, = G;l*Gl-’ 
(3.6) 

( (pr > 0 is an arbitrary, sufficiently small number ). 
Let us consider the function (H, is a square matrix of the order n - r ) 

v, (q (t)) = w,rl (t), rl (t)) = o-a II r (t) II ’ 

H, = diag {(o-s, . . . , ct)-‘} 
(3.7) 

Its derivative with respect to t has, by virtue of the second system of (3.4), the form 

This implies that V,’ (yc”’ (t)) = 0 on [to, w). It means that when the initial value 
y(‘Q (ts) is chosen so small that 

v, W2’ (4J) 5: Pz2 
(3.8) 

then we have 

V, W (6) < Pr2 (3.9) 

( p2 > 0 is arbitrary and sufficiently small) for all t > 6~ , i. e. the second system of 
(3.4) is also stable. 
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Any solution Y (t) of the system (3.3) has the form 

?j (t) = 
Y(l) (t) I /I ?I@) (t) I 
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(3.10) 

where Y(l) (t)and Y(“)(t) represent the solutions of the first and second system of (3.4) 
respectively. 

Let us take the function V (Y (t)) = (HY (t), y (t)), where H = diag {H1H2} 
and 12-l [ plwf (H) + . . . + ~~-1 (H)] = 02, defining the &-tube: V (y) 3 
(HY, Y)+_At the initial instant we have, by virtue of (3.5) and (3.8), the following 
relation along the solution (3.10): 

v (y (to)) = V, (Y”’ (to)) + V, (Yt2’ (h)) < Pa (P” = PI2 + PzS) 

and for all t > t, we have, by virtue of (3.6) and (3.9), 

v (y (t)) = v, (YC” (t)) + v2 (Y@’ (t)) < P’ 

(when p1 and ps are chosen sufficiently small, p > 0 will also be sufficiently small). The 
theorem is proved. 

4. Criteria of stability in the first approximation. Letthedif- 
ferential equation have the form 

dzldt=As+f(5), f(z) =col(f,(z), *.a, fn@)) (4.1) 

where d is a constant n X n matrix and the functions f,(x) = f, (al, . . . , &) 
(s=l, . ..) n) can be expanded in the region 11 z 11 < L < m into series in pow- 

ers of %y* - * 9 h the first terms of which are of at least second order. Below we shall 
also concern ourselves with the first order approximation to the system (4. l), namely 

dxldt = Ax (4.2) 

Theorem 4. 1. The system (4.1) will be asymptotically stable if all characte- 
ristic roots of the matrix A have negative real parts. 

Proof. Let Re h, < 0 (j = 1, . . . , 72). Then by virtue of Theorem 3.1. the 
system (4.2) is asymptotically stable. 

Consider the function 

V (z) z (Hz, z) E (K-‘z, K-lx) 

constructed in Theorem 3.1. Its derivative with respect to t , by virtue of the system 
(4. l), has the form 

V’ (x (t)) = -2 (Wx, 4 + (Hz, f (4) + (Hf (4, 4 
(4.3) 

Since the first terms in the expression (Ha, f (z)) -t- (Hf (a), z) are of at least third 
order, the function (4.3) will, at sufficiently small x (11 X 11 < IL < L) be negative 
definite on [a, m) for any functions fs (r~) (s = 1, . - . , n). Consequently the in- 
equality V (Z (t)) < V (x (t,)) holds for all t > to > a , and this means that the sys- 

tem (4.1) is stable. 
We shall show that 
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is also true. Indeed, from (4.3) it follows that the function V (z (t)) is monotonously 
decreasing, therefore when t -+ CC, V (z (t)) -+ Y > Oand we have, for all t > to, 

v (x (t), > y (4.5) 

We shall now prove that Y =O. Let Y # 0. Since the function V (z (t)) is posi- 
tive definite, v > 0. By virtue of the continuity of the function V (.z (t)) from (4.5) 

follows 11 s (t) 11 > fi > 0. H owever, since the form (4.3) is negative definite, we find 

that when 11 z (r) 11 > fi > 0 the inequality V’ (z (t)) < - y < 0 holds on Its, 

00) . Consequently we have for all t > t0 

which is clearly impossible. Therefore liml,, V (2 (t)) = 0 and that implies that 

(4.4) holds by virtue of the sign definiteness of the form V (x. (t)) . This completes the 
proof of the theorem. 

Theorem 4.2. The system (4.1) is unstable if the characteristic roots of the ma- 

trix A contain at least one root with a positive real part. 

pro of. The system (4.1) cannot be stable since when the function o I‘$) is boun- 
ded, the stability in the sense of the Definition 1.1. would imply the Liapunov stability, 

while under the condition of the theorem the system (4.1) is Liapunov-unstable (see e. g. 

lI51). 
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